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Abstract-The linearized behavior of a fluid layer subjected to a step change in surface temperature is 
examined using two different conceptual approaches. The first approach uses initial value techniques 
while the second employs two common versions of the “frozen-time” hypothesis. Both surfaces are taken 
as rigid and conducting. Galerkin’s method is used to obtain the approximate solutions, while “exact” 
solutions are obtained via numerical integration for certain cases. 

It is shown that, while the first version of the frozen time model (the marginal state analysis) is not 
applicable to the transient system, the second version (quasi-static analysis) is valid for large time but is 
of limited usefulness for most cases of interest. The effects of various initial conditions, on the velocity 
and temperature perturbations. are clarified and discussed. The results nresented here comnlement those 
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_ available for a semi-infinite fluid with the same boundary conditions at he top surface. 

NOMENCLATURE R, Rayleigh number = agATh3/rcv; 

matrix with elements A, defined in t’, time; 

Section 3; 4 dimensionless time z t’lc/h’ ; 

dimensionless wave vector; T’, temperature = AT[T + B/,/R] ; 

magnitude of a; 
-, 
T, base (no flow) temperature; 

components of a; T, dimensionless temperature I F/AT ; 

matrix with elements B, defined in T% time dependent amplitude in equa- 

Section 3; tion (15); 

matrix with elements Cij defined in KY time dependent amplitude in equa- 

Section 3; tion (16); 

matrix with elements II, defined in W’, vertical component of velocity; 

Section 3 ; W, dimensionless vertical component of 

matrix with elements E, defined in VClOCity E w’h/K; 

Section 3 ; x’, y’, z’, position coordinates; 

error function ; x3 Y, z, dimensionless position coordinates 

z-part of temperature trial functions = xl/h, y’/h, z’/h. 

3 sin inz; 
acceleration due to gravity; Greek symbols 

layer depth; 
ii, 

thermal coefficient of expansion; 

Prandtl number =_ V/K; temperature perturbation; 

dimensionless heat source defined in 0, dimensionless temperature perturba- 
Section 2; tion 3 B(,/R)/AT; 

* Presently with the Atomics International Division of K, thermal diffusivity; 
North American Rockwell Corporation. v, kinematic viscosity; 

201 



208 P. M.GRESHO and R. L. SAN1 

growth factor appearing in equations 
(11) and (12); 
z-part of vertical velocity trial func- 
tions = sin nz sin inz. 

Special symbols 

F(f)> two dimensional Fourier transform 

off; 
overdot, time differentiation; 
overbar, root mean square average; 
AT, temperature difference across layer. 

1. INTRODUCTION 

THE STABILITY of a quiescent, horizontal, fluid 
layer, cooled uniformly from above, whose 
density decreases linearly with increasing tem- 
perature can be adequately assessed by the 
magnitude of a dimensionless group, R, called 
after Rayleigh. If the Rayleigh number exceeds 
the critical value (1707.76 in this investigation), 
the “top-heavy” quiescent fluid layer becomes 
unstable, flow begins (usually tending to some 
steady, cellular convection pattern in the hori- 
zontal plane), and the temperature profile 
becomes distorted due to convection. If, in an 
experiment, the Rayleigh number is increased 
very slowly (e.g. by lowering the temperature at 
the top surface while maintaining the bottom 
temperature), it is found that the linearized 
theory corresponding to a constant temperature 
gradient does indeed describe, to a good approxi- 
tion, the stability of the layer and the size of the 
resulting convection cells. A thorough summary 
of this hydrodynamic stability is given in 
Chandrasekhar [l]. However, if an experiment 
is performed wherein the Rayleigh number is 
quickly increased from zero (a layer of uniform 
temperature) to a value above critical, the time 
at which (measurable) motion begins-the onset 
time-becomes the dominant question. This 
stability problem, i.e. with a time-dependent, 
non-linear base temperature profile, has only 
recently been attacked analytically and is not 
yet nearly as well resolved as the steady (linear 
profile) case. The early investigators [224, 6] of 
this transient problem took the approach of 

modifying the extant hydrodynamic stability 
analyses (i.e. for non-transient systems) in such 
a way (viz, by “freezing” the time) as to retain 
the basic concepts and methods underlying these 
analyses. The first examination to start afresh 
and properly consider the problem as an initial 
value problem was performed by Foster [5] 
while another (Robinson [7]) examines the 
range of validity of the frozen time model, based 
in part on Foster’s work. Some recent papers 
using initial value techniques are those by 
Foster [S], Mahler et al. [9] and Elder [lo]. 

The purpose of this investigation is to clarify 
and to critically examine the models employing 
the frozen time assumption. The system con- 
sidered in this study is one with fixed tempera- 
tures (uniform throughout for time less than 
zero) at top and bottom surfaces (conducting 
walls); these surfaces are rigid and are assumed 
to be “no-slip” with respect to fluid motion. The 
layer has a finite depth and is infinite in the 
horizontal directions. At time zero, the upper 
surface temperature is reduced to AT below the 
lower one and maintained there. 

2. BASIC EQUATIONS 

The derivation of the governing equations 
has been adequately presented several times 
(cf. Goldstein, Chandrasekhar, Foster) and will 
not be repeated here. For a mechanically in- 
compressible but thermally deformable fluid 
these (linearized and dimensionless) equations 
are as follows (z is measured vertically down): 

;1T a2T 
-c- 

at az2 
(1) 

g-v2 ) - (2) 0 = -(JR)wg 

(A; - V2)V2w = - (JR)V;%. 

The initial condition and boundary con- 
ditions on the base temperature are: 

T.-= 1; O<zZl; t-o (4) 
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T-0; z -0; t>o 1 (5) 
Tc 1; z = 1; t>O . J 

For a system with conducting walls at both 
surfaces the boundary conditions on the tem- 
perature perturbation are 8 = 0 at z = 0, 1 
while those on the velocity perturbation are, for 
rigid walls w = 0 and aw/az = 0 at z = 0,l. The 
initial conditions for the perturbations will be 
discussed later. 

The solution to (1) subject to (4) and (5) is: 

m 

(6) 

-II= 1 

at small times (t < - 0.01) the following approxi- 
mation, based on the fluid having infinite depth, 
is more useful: 

T - erf (z/J4t). (7) 

Since there are no lateral boundaries on the 
system, an arbitrary distrubance in the xy-plane 
can be expressed in terms of two-dimensional 
periodic waves by means of Fourier transforma- 
tions; e.g. 

=& ss _ f(x,y,z,t).exp[i(a,x+u,y)ldxdy, (8) 
m 03 

where a G J(uz + at) is the dimensionless 
horizontal wave number of the disturbance. 
Transforming (2) and (3) according to (8) and 
noting that 

F[v; w] = -a2 wi 

9s[v; e] = -a2 8, 
(9) 

leads to the following equations, 

gl=($-u2)e1 -(JR)wlg (10) 

g- 2)gl 
_(+y w1 + u2 (JR) 8,. (11) 

While the boundary conditions are unaffected, 
the initial conditions must in general be con- 
sidered in terms of the transform variables, a, 
and a,, 

Since aT/az is a function of t, the time- 
dependence cannot be separated by assuming 
a/at = 0, where 0 is the growth rate. However, 
for the linear temperature profile, aT/az = 1 
and exponential time dependence is correct, 
giving (henceforth the subscripts will be 
suppressed): 

fJe =(P - uz)e - (JR)w (12) 

;(D’ - 2)~ = (02 - ~2)2~ + d(JR)e. (13) 

This is in the form of the classical stability 
equations, leading to an eigenvalue problem for 
R (or 0). 

At this point, the two variants of the “frozen 
time” model can be introduced; the first is the 
marginal state model and the second is the 
quasi-static or asymptotic model. 

In the marginal state method the nonlinear 
base temperature profile is “frozen” at each 
instant of time. In this case aT/az is only a 
function of z and t is a parameter and the 
variables can be separated as in the case of the 
linear profile. The problem is then reduced to a 
classical hydrodynamic stability problem, albeit 
one with a nonlinear temperature profile. On 
the other hand, the asymptotic model is based on 
the hypothesis that after some time, sufficiently 
large, the growth rate of the perturbations is so 
large relative to the rate of change of the base 
profile (which approaches zero at infinite time) 
that the perturbations can be treated as being 
“in equilibrium” with the existing base profile at 
each instant. Unfortunately, the requirement of 
“large time” will be shown to severely restrict the 
applicability of this model. 

3. FORMULATION OF THE APPROXIMATE 
SOLUTION EQUATIONS 

Equations (10) and (11) must be integrated, 
subject to initial conditions on 8 and w, for 
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various values of R, Pr and a’, in order to obtain 
a transient “stability map” of the system. This 
will be done approximately using a time- 
dependent Galerkin method; the temperature 
and velocity perturbations are thus each repre- 
sented by a series of specified spatial functions 
(trial functions) with time-dependent amplitude 
coefficients. The determination of these ampli- 
tude coefficients constitutes the bulk of the 
solution method since the spatial dependence is 
“removed” according to the method of Galerkin, 
Thus, 

O(z, t) = T(t) .fM (14) 

w(z, t) = c Wt) cPitz) (15) 
i=l 

where, for this study, J(z) -1 sin irrz and p,(z) = 
sin rrz sin irrz, which satisfy the boundary con- 
ditions on z. Galerkin’s method results in a 
linear set of 2N simultaneous, first-order 
differential equations for the amplitude co- 
efficients, v(t) and T(t), the Galerkin equations 
of the problem (x = (dTJdt), etc.): 

t = - [A.T +(JR)B(t).V] (16) 

k C.IJ’ = - [ D.V + a’(JR) E.T]. (17) 

Once initial conditions are specified for T, v, 
i = 1,2,.. . , N, the set of equations (16), (17) may 
be integrated simultaneously. This was done 
numerically on an IBM 7094 using a 4th-order 
Runge-Kutta method. 

The characteristic equation generated in the 
asymptotic (large time) model can be obtained 
by formally setting t = oT and p = oY in 
(16) and (17) and satisfying the solvability 
condition for the resulting set of algebraic 
equations, i.e. 

det FrC+ D-a’RE.(A+al)-‘.B(t) =O. (18) 

The characteristic equation generated by the 

marginal state model is obtained by simply 
setting c = 0 in (18). 

4. NUMERICAL SOLUTION OF THE 
APPROXIMATE EQUATIONS 

Since the linearized equations describing the 
perturbations, (2) and (3) and the boundary 
conditions, are homogeneous, a solution can 
be obtained only up to an arbitrary multiplica- 
tive constant. The selection of this “constant” 
adds another complication to the analysis. One 
obvious and simple way of avoiding (or dis- 
guising) this selection is to somehow normalize 
the results based on the initial conditions. 
Although this procedure is quite acceptable 
mathematically, it does little to aid one’s 
physical concept of the system. Since no better 
way is.known, the results will be presented in a 
normalized form. Among the reasonable quan- 
tities to be considered for normalization are the 
following: (1) average velocity, average tem- 
perature, or a combination of the two, (2) RMS 
(root mean square) velocity, RMS temperature, 
or a combination of the two (e.g. the vitality- 
a measure of the “energy” of the perturbations 
defined as 

C{ ; [u’ + u2 + w’] + Hz} du. 

v”, L I 

However, in order to allow a more direct com- 
parison of our results with those of Foster and 
of Mahler et al., we will measure the instability of 
the system in terms of a normalized, RMS velo- 
city (or kinetic energy), ii(t): 

(19) 

Note that the initial velocity perturbation must 
be non-zero, a restriction not encountered if the 
vitality were selected instead. 

The onset time is then “defined” from the 
value of w(t) at which infinitesimal disturbances 
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become observable and is thus directly related 
to the elusive ratio introduced above. Based 
partly on intuition and partly on precedent, a 
value of 1000 was used in this work; i.e. the onset 
time is defined by $t,) = 1000. 

The general nature of the solutions, 8 and w, 
and their shape and growth relative to T(z, t) are 
displayed in Figs. 1 and 2 for symmetric initial 
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FIG. 1. The base temperature profile for a step change. 
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FIG. 2. Z-profiles at various times for R = lo’, Pr = 7, 
a = 7.8, N = 10. The RMS velocity, G(t), at times 0, 0.002, 
0~004,0~010,0~020 is 1.0,2.75, 3.18, 14.9 and 753 respectively. 

profiles (V, = 1, T1 = - 1). The temperature 
profile near the onset time,(i.e. at t = 0.02) is 
seen to be independent of the lower boundary, 
whereas the velocity profile is still slightly 
affected; hence, R = lo5 and Pr = 7 should be 
close to “borderline” between treating the layer 
as one of finite or infinite depth. It is also note- 
worthy that a reasonable accuracy was obtained 

FLUID LAYER 211 

if the number of trial functions in each expansion 
was at least as large as the wave number, a. 
This result was also observed by Foster and 
Mahler et al. 

The initial value problem can only be solved 
after specifying “initial” data; these data deter- 
mine on which trajectory the solution lies. In the 
case of a fluid layer heated from below, the 
initial conditions are generally not known and to 
some extent are even beyond the control of the 
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FIG. 3. White noise initial conditions (N = 16); the curves 
are given by 

1 + 
e,(z) = - 1 sin nnz and 

N,=, 
wO(z) = -eO sin KZ. 
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experimenter. (Here, initial conditions refer to 
the distribution of perturbation temperature 
and velocity, generally at the time the step 
change is imposed.) In fact, it is not even known 
whether initial conditions are the most important 
reason for instability in the laboratory--equally 
possible are continuous (in time), random (or 
not) perturbations; e.g. in the form of building 
noise and vibration or non-uniform heat trans- 
fer, which could tend to reduce the importance 
of initial conditions. 

The subject of initial conditions was first 
discussed by Foster [5], then by Mahler et al. ; 
these authors (especially the latter) concentrated 
on the set of initial data leading to the fastest 
growth of the velocity perturbation [as measured 
by G(t)]. Such initial condi:‘ons simply do not 
exist; perturbation can be made to grow “as 
rapidly as desired” by appropriately selecting 
the initial conditions. Unfortunately, this is 
somewhat of a negative result in that it weakens 
the transient theory. It should also be noted that 
Elder [lo] reduced the effect of initial conditions 

by imposing a continuous random source of 
temperature perturbations at the surface under- 
going the step change. 

A “popular” set of initial conditions is that 
of “white noise”, wherein all amplitude co- 
efficients are set equal. In Fig. 3 are shown the 
temperature and velocity profiles corresponding 
to white noise for N = 16 (thus representing 16 
vertical “cells” or “eddies”, a rather unlikely 
configuration). Perhaps the most important 
feature of white noise is the stronger emphasis 
given to the perturbations near z = 0; since 
8vaz is large near z = 0, it is reasonable to 
expect this initial condition to be one of rela- 
tively rapid growth. It is also important to note 
that the initial profiles for white noise vary not 
only with N, the order of the approximation, 
but also with the type of trial functions em- 
ployed. The principal reasons given by Foster 
[5] for selecting white noise were (1) it gave the 
fastest growth rates, (2) it seemed to be the most 
reasonable assumption for an arbitrary initial 
disturbance. Foster, however, overlooked or 

FIG. 4. Initial temperature profiles for two initial conditions for R = 106, Pr = 7, a = 16, N = 16. Initial conditions: 
Solid curve-F(O) = 1, t(O) = 10’; Dotted curve-K(O) = 1, c(O) = 0. 



STABILITY OF A FLUID LAYER 213 

I. I( =I0 ;i(=I.O;i*l2; N 
2 T,=l,/=l;..N, v/:0.01, 

V, =O, I =2;,.N 

3.~=1,1/)=-1;,=1,2;.~N 

4.Frozen time results; o= 
5.7;=0,(=1 o,?y=y=o,/=2, 

6.7;=0, F-1 0;/‘=1.2, W 

7 Frozen time r&ts using 
morginol state wove no., 
a=4-6 

/I I I I I 
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FIG. 5. RMS velocity, i?(t), for several initial conditions; R = 106, Pr = 7, u = 16. 
N = 16. 

ignored the fact that his “reasonable” assump- 
tion of white noise in velocity with zero slope 
(acceleration) casued a possibly “unreasonable” 
distribution of temperature. This effect is a 
result of combining the two perturbation equa- 
tions into one higher-order equation and of 
selecting c(O) arbitrarily. 

In order to obtain a “fastest growing” set of 
initial data (at least for velocity), the following 
initial conditions were specified: c = lo*, y = 
1.0, i = 1,. . . , N; this is white noise in velocity 

with a very large initial slope or acceleration 
(Foster assumed zero initial slope), the com- 
bination admittedly being possible only by 
specifying an “unusual” temperature distribu- 
tion. Because of (17) the initial temperature 
coefficient vector must be 

T=-- ’ YE-1 .(Pr-’ C.V + D.Y). 
a (JR) 

The initial acceleration of 10’ was selected 
merely as a dramatic illustration; it should serve 
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to show, however, that t, -+ 0 as c(O) + cc, thus 
precluding the existence of a “fastest-growing” 
initial condition. In Fig. 4 are shown two initial 
temperature profiles for white noise in the 
velocity; the first corresponds to the above 
example of fast-growing initial conditions and 
the second to Foster’s initial condition of zero 
slope. It thus turns out that the “forced” tem- 
perature profile is really no more “unreasonable” 
than that corresponding to white noise in 
temperature (at least for the trial functions 
employed here). 

The results of the investigation of initial 
conditions are summarized in Fig. 5 for R = 106, 
Pr = 7, and two “critical” wave numbers- 
a = 16 from the transient results and a = 4.6 
from the frozen time model. (The transient 
critical wave number is defined to be that which 
causes w(t) to reach 1000 at the earliest time, 
starting from the same initial data-the frozen 
time curves will be discussed later.) 

Note that the initial conditions can have a 
significant effect on the onset time, t,; the onset 
time may vary by as much as * 50 per cent or 
more due to initial conditions and moreover, 
there is no set of fastest growing initial data. 
However, the importance of the initial con- 
dition effect is strongly dependent on the am- 
plification ratio, E(t,), selected to define r,; this 
is due to the “parallelism” of the curves in Fig. 5. 
However, the shape of the w(r) curves is in- 
fluenced for a relatively short time only (up to 
approximately t = 0.0025 for the data of Fig. 5, 
a = 16); after this time, all curves remain 
parallel with a slowly increasing slope. It is 
therefore expected that any reasonable but 
consistent set of initial data will result in the 
correct prediction of critical wave number, 
Prandtl number effect, etc., as long as the 
transient effects of the initial conditions are 
minimal by the time the critical value of W(t) is 
reached. 

From curves 2 and 6 in Fig. 5, equations (16) 
and (17), and noting that the transient matrix 
e(r) is zero initially, it is apparent that any 
initial growth is due to the initial temperature 

perturbations rather than those on velocity. 
This is quite reasonable since a temperature 
perturbation immediately produces buoyancy 
forces in the fluid, whereas (from the linearized 
equations) a velocity perturbation can convect 
energy only after the base temperature gradient 
becomes appreciable due to thermal diffusion; 
these processes represent the “driving forces” 
for the instability, the remaining effects being 
the diffusive, or stabilizing ones. The onset time 
may thus be expected to be “small, medium, or 
large” according to whether the initial disturb- 
ance is in the temperature, in both temperature 
and velocity, or in the velocity only. 

Since curves 2 and 6 of Fig. 5 represent fairly 
reasonable extremes of initial data, and therefore 
provide “bounds” on the onset time, a single, 
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FIG. 6. Growth of the individual amplitude coefficients for 
R = lo’, Pr = 7, a = 7.7, N = 10; t, G 0.02. White noise 
initial conditions; q = -K = 1.0, i = 1, 2, , 10. The 
solid, numbered curves are K and the dashed, numbered 

curves at K. 
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consistent choice of initial conditions for de- 
fining t, should probably lie between these 
two extremes. It is not unreasonable, therefore, 
to select either curve 3 or 5 as the “standard”; 
the more “active” one of white noise in velocity 
and temperature (curve 3) was selected. 

It must be pointed out, however, that the 
relative growths of the curves in Fig. 5 apply 
only to W(t); if either the vitality ratio or a 
root-mean square temperature ratio were used 
to determine the onset time, the “order” of the 
curves in Fig. 5 would be changed [e.g. basing 
the growth on the vitality ratio instead of w(t) 
changes the order from 1,2, 3,4,5,6 to 4,2,3,5, 
1, G-also, the spread in onset times, At,, is 
reduced from approximately 0906 to approxi- 
mately 0~0013, thus seemingly giving an “edge” 
to vitality over E(t)]. 

It appears that the dilemma involving initial 
conditions carries over to the experimental 
observations of first Blair and Quinn [12] for a 
step change and second Spangenberg and 
Rowland [13], Foster [14] and Blair [15] for 
water evaporation. The difference in the detini- 
tion of ii in the two types of experiments 
exceeded four orders of magnitude in order to 
obtain agreement between experiment and 
theory. 

Figure 6 shows how the amplitude coefficients 
vary with time compared to the vitality, w(t) 
and RMS temperature for white noise initial 
data (T = - E = 1.0, i = 1, . , . , 10) and 
R = 10’. A typical feature of the solutions 
exhibited here is the tendency of the higher- 
order temperature coefficients to “turn around” 
as the base temperature profile develops; in the 
limit of t --f co only T1 and T, will not have 
reversed their directions. 

In contrast to the transient analysis a strongly 
appealing feature of the frozen time models is 
that the numerical calculations are quite straight- 
forward and involve no subjective decisions on 
the part of the analyst. The solution is obtained 
simply by iteration on R (or a) in (18) until the 
determinant is approximately zero (or changes 
insignificant1y-e.g. to 7-8 decimal places- 

from one iteration to the next). Thus, for the 
marginal state analysis (~7 = 0) the minimum 
R in a plot of R vs. a at a fixed t yields the 
critical wave number, a,, at the time selected. 
In the quasi-static analysis it is usually more 
convenient, though less efficient, to iterate on CJ 
at fixed values of R, a, t and Pr; the maximum 
in a plot of CJ vs. a (for fixed R, t, Pr) is the 
(instantaneous) maxima growth rate and is 
used to define the critical wave number. 

5. RESULTS AND DISCUSSIONS 

Using white noise initial data, several runs 
were made at various wave numbers for a 
fixed R and Pr-and i?(t) vs. t was plotted; by 
cross-plotting the resulting values of time vs. 
wave number at W= 1000, both the onset time 
and critical wave number were obtained from 
the minimum in the curve. In Figs. 7 and 8 
(solid lines) are shown the effect of Rayleigh 
number on onset time and on the critical wave 
number, respectively, for Pr = 7. It is seen that 
the infinite layer model could be successfully 
employed for Rayleigh numbers larger than 
about l-2 x 10s, since the asymptotic condi- 
tions have been attained. For these curves, the 
asymptotic relations are: Rtf E 280 and R E 
250 a:, hence act: 2 1.04 and the scale of the 
initial motion is thus set by the thickness of the 
thermal layer (Elder [lo]). The numerical 
coefficients would vary somewhat if different 
initial conditions were assumed (cf. Fig. 5) or if 
@(t,) were selected to be other than 103; e.g. for 
iV(t,) = 10’ and 104, the R vs. t, asymptotes 
become Rt! = 180 and 380 respectively. These 
results compare remarkably well with Foster’s 
[8] infinite layer results. From Fig. 1 of his paper, 
for a slightly different Prandtl number (Pr = 10) 
and different initial conditions, the results are 
(after converting from the dimensionless units 
for an infinite depth system to those of this 
study): R = 230 a: to 250 al for @(t,) z lo3 and 
Rtf 2 170,270 and 360 for ii = lo’, 103, lo4 
respectively. This close agreement in onset time 
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FIG. 7. Onset time vs. Rayleigh number. Solid curves are from transient analysis for Pr = 7: 
dashed curves are from frozen time analysis. 

/’ 

__A_-- 

FIG. 8. Critical wave number vs. Rayleigh number. Solid curve is from transient analysis for Pr = 7; 
dashed curves are from frozen time analysis. 
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FIG. 9. Variation of onset time with Prandtl number for R = 105. 

is apparently due to the fact that both tempera- 
ture and velocity perturbations are present 
initially in each analysis. 

The Prandtl number also affects both the 
onset time and the critical wave number, as 
shown in Figs. 9 and 10 for R = 10’. For 
Prandtl numbers greater than about 100, the 
infinite Prandtl number results seem to apply; 
i.e. the results are independent of Pr [the values 
of t, g 0.014 and a, g 6.75 from Figs. 9 and 10 
may be compared with t, E O-012 and a, g 5.8 
from Figs. 3 and 4 of Foster’s [8] work for the 
same iii(t,)]. For Pr c -0.10, the onset time 
varies as Pr- 3- (the asymptote is given by 
t, . Pr* E O-0245); Foster’s infinite layer results, 
for E(t,) = lo3 and Pr c -0.10 are given 
approximately by t, (Pr . R)3 = 51 or C, Pr* g 
0.0237 for R = 105. Thus, for small Pr and 
large R, the onset time should vary as (Pr . R)-3, 
which causes the dimensional onset time to be 
independent of both depth and viscosity (an 
infinite depth, inviscid fluid). This limiting case 
would apply as v + 0 since this causes Pr + 0 

and R + DC) simultaneously; in this case, as 
shown by Foster, the dimensional critical wave 
number is also independent of depth and 
viscosity, as a, - (Pr . R)*. For a finite R 
however, as in Figs. 9 and 10, these asymptotic 
results are somewhat different as Pr + 0; while 
the onset time does vary as Pre3, the critical 
wave number does not vary as Pr’, but 
approaches a limit of 3.117. This corresponds 
to the fastest growing wave number as Pr + 0 
for a linear temperature profile and is a result 
of t*c + CO. The interesting “peak wave num- 
ber”, at Pr = l-2 in Fig. 10, was previously 
predicted by Foster and by Mahler et al. 

The principal results of the frozen time, 
marginal state analysis are shown by the dashed 
lines in Figs. 7 and 8 as onset time and critical 
wave number as a function of Rayleigh number 
(for any Prandtl number !). These results were 
verified via numerical integration of the marginal 
state (cr = 0) equations. Here the asymptotic 
conditions are attained more slowly and are 
quite different than those from the transient 
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analysis; for R > - 106, R t! = 2 and for 
R > -2 x 109, R r 2.04 x lo6 u:. If these 
results are interpreted as applying to a fluid 
layer with a distributed heat source (such that 
aT/dt = 0) which depends on a parameter t,, 
then they are meaningful. If, however, they are 
assumed to describe the stability of a fluid layer 
undergoing a step change in temperature, then, 
by comparison with the results of the transient 
analysis, they are clearly seen to be erroneous. 

Pr 

‘Ooor 

,+= *- / 

9 

FIG. 10. Critical wave number vs. Prandtl number for R = 10’. 

The main reason for the large discrepancy 
can be traced to the basic premise of the frozen 
time analysis-it is assumed that the growth 
rate of the perturbations, U, is large compared 
to the rate of change of the base profile--clearly 

the worst time to apply this assumption is when 
rr = 0; i.e. the basis for the marginal state 
analysis. For small time, the decay rate, - aT/at, 
of the base temperature transient varies at most 
as l/t (at z = J2t), while for large time it varies 
as een2’; thus, in general the frozen time model 
is seen to be relatively poor for small times 
(large R) but gets progressively better for large 
time (small R). 

Also shown in Fig. 7 is the asymptote obtained 
by Currie, R t: = 7c*/2, which is quite close to 
the frozen time results of this study. The small 
difference is most likely attributable to the 
“thermal depth” approximation employed by 
Currie. The original approximation suggested 
by Lick [4], employing two linear segments, 
should be much closer to being uniformly valid. 

Another interesting result obtained by Currie 
was the prediction of instability for Rayleigh 
numbers less than 1707.76, depending on the 
manner and rate of heating. Thus, for a step 
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FIG. 11. Frozen time model: Onset time vs. Rayleigh number 
for large time (a = 3.12). The solid curve was obtained via 
numerical integration (50 equal steps in z); the other points 
are from the approximate solution with the corresponding R 

for a linear profile in parentheses. 
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change in temperature, his results indicate 
(potential) instability for R > 1340. Although 
his qualitative prediction of R < 1707.76 for 
some range of t is valid, his quantitative pre- 
dictions, for a step change, are poor. Quantitative 
values of the critical Rayleigh number are 
displayed in Fig. 11 and it is apparent that R is 
less than 1707.76 for t > -0.15; the minimum 
of N 1706.36 occurring at t g 0.186. Finally, it 
should be noted that these results (i.e. R < 
1707.76) are not unusual if they are interpreted 
as describing the marginal state with a distri- 
buted heat source; somewhat similar results 
were computed by Sparrow et al. [17] for a 
system with a uniform heat source. 

Although the frozen time hypothesis is invalid 
at the marginal state, it may be valid for large 
time; i.e. when the perturbations are growing 
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rapidly. Hence, the task of selecting a criterion 
for “sufficiently large time” arises. As a step in 
this direction, one could compute and plot a(t) 
for a given Rayleigh number, Prandtl number, 
and wave number, and “apply” the quasi- 
static assumption when (l/c?) da/dt < 6, where 
t is “sufficiently small”. Such a plot is shown in 
Fig. 12 for a large Rayleigh number (106); also 
plotted are the instantaneous growth rates of 
the first and tenth individual amplitude co- 
efficients (T and ?$ where o(T) = t/q, etc., 
for the initial conditions TI = - VI = 1; 
T = 6 = 0, i = 2, 3, . . . , 16 (the discontinuity 
in a(T,,) is caused by T,, passing through 
zero-cf. also Fig. 6). For times on the order of 
0.01 or greater, all of the individual growth 
rates and that from the quasi-static theory tend 
to converge to about the same value; also 

FIG. 12. Growth rates vs. time for R = 106, Pr = 7, a = 16, N = 16. The marginal state occurs at t, = 0430026 
(a = 0) from the frozen time model whereas the onset time from the transient model is t, = 0.0050 with the initial 

conditions used here (TV = - V, = 1; others zero). 
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(l/a) do/dt becomes small compared to 0. Thus, ACKNOWLEDGEMENTS 
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t, z 0405 (for white noise initial conditions, 
t, G 04042 from Fig. 7); i.e. the fluid is already 
“unstable” by the time the asymptotic theory 
begins to apply (this is only strictly true for small 
onset time+this point was also mentioned 
first by Foster and later by Elder whose con- 
clusions are more firmly based owing to his 
inclusion of the nonlinear effects. 
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STABILITE D’UNE COUCHE FLUIDE SOUMISE A UN CHANGEMENT ECHELON EN 
TEMPERATURE: ANALYSE DU SYSTEME TRANSITOIRE EN FONCTION DU 

“TEMPS GELf? 

RCumLLe comportement linearise d’une couche fluide soumise a une variation echelon de temperature 
superficielle est examin&ea l’aide de deux approches differentes. La premiere approche utilise des techniques 
de valeur initiale tandis que la seconde emploie deux versions communes de I’hypothese de “temps gel?. 
Les deux surfaces sont choisics rigides et conductrices. La mtthode de Galerkin est utili& afin d’obtenir 
les solutions approchees tandis que les solutions “exactes” sont obtenues par integration numerique 

dans certains cas. 
On montre que, tandis que la premiere version du modtle de “temps gel&” (analyse d’ttat marginal) 

n’est pas applicable au systtme transitoire, la seconde version (analyse quasi-statique) est valable pour une 
grande dur6e mais est d’une utilite limit&e pour la plupart des cas inttressants. Les effets de conditions 
initialcs variables, sur les perturbations de vitesse et de temperature, sont clarifies et discutes. Les resultats 
presentes ici completent ceux utilisables pour un fluide semi-in&i avec les mCmcs conditions aux limites 

a la SUrfdCC. 

DIE STABILITAT EINER FLUSSIGKEITSSCHICHT, DIE EINEM PLGTZLICHEN 
TEMPERATURSPRUNG UNTERWORFEN WIRD: INSTATIONARE UND 

QUASISTATIONARE BEHANDLUNG 

Zusammenfassung-Das linearisierte Verhalten einer Fliissigkeitsschicht, deren Oberfllchentemperatur 
eine sprunghafte Anderung erfahrt, wird mit zwei verschieden konzipierten Naherungsverfahren untersucht. 
Das erste Verfahren arbeitet mit der Anfangswerttechnik, wahrend das zweite zwei iibliche Methoden der 
“frozen-time”-Hypotheseanwendet. BeideOberfIichen werden als starrund leitend angenommen. Galerkins 
Methode wird verwendet, urn Niherungslijsungen zu erhalten, wlhrend “exakte” Liisungen in bestimmten 
Fallen mit numerischer Integration erreicht werden. 

Es zeigt sich, dass die erste Version des “frozen-time”- Modelh (Randwertanalyse) auf das Uberganga- 
system nicht anwendbar ist, wihrend die zweite Version (quasistatische Analyse) fur eme lange Zen 
giiltig ist, aber fur die meisten interessierenden FLlle begrenzten Nutzen hat. Die Einfliisse verschiedener 
Anfangsbedingungen auf Geschwindigkeits- und Temperaturstorungen werden gekllrt und diskutiert. Die 
hier erzielten Ergebnisse vervollstlndigen jene. die fur eine halbunendliche Fliissigkeitsschicht mit den- 

selbcn Randbedingungen an dcr Oberllache angegeben hind. 

YCTOH=IHBOCTb ~MfiHOIO CJIOH IIPH CTYIIEHYATOM HSMEHEHHH 
TKMIIEPATYPbI 

klHOTa~W+~HHeapM30uaHHOe IlOBe~eIfHe lfiM~Z(KOr0 CJIOR llpkl CTYllCHqaTOM L13MeHelfllLI 

TeMllepaTJ’pbI IlOBepXHOCTlf paCCMaTpHBaeTCH C I4CIlOJIb30BaHHeM ABJ’X pa3JlWlHblX IIO~XO~OB. 

npH IlepBOM IlO~XO~e MCXOnXT 113 IEpaeBOti 3aAaW C HaYaJlbHblMH YCJIOBMRMPI, TOrna IcaK 

IlpEi BTOPOM MCllOJlb3J’lOTCR J(Ba 06bIYHbIX l3apElaHTa rHllOTe3bI Q3aMOpOHFeHHOrO BpeMeHGia. 

06e IlOBepXHOCTH llplIHl4MalOTCH HCeCTKLIMH If lIpOBO~FlllJl4MH. AJIFI IlOJlyYeHlUf llpGl6JlPlmeHHbIX 

peLUeHlfi% l4CllOZlb3yeTCH MeTOn raJleplGlHa, a ((TOqHbIe) pellleHHH IlOJlyqeHbI IlyTeM ~ACJleHHOrO 

HHTe~pMpOBalfI~wI AJIFI OIIpefleJIeHHbIX CJIyqaeB. 

IIoKa3aHo,9~0 ecnli nepI3blti sapliaHT hlofiem 3ahiopomeHIforo speMeHa / aHam Kpaesblx 

COCTOlfHIfti / Ile llpHMeHlf~l AJlFf IlepeXOJ(HbIX IlpO~eCCOB B CLiCTeMe, TO BTOpOi% BapllaHT 

/ KBa31iCTaTJf~eClUf~ aHaJl113 / CllpaBe&llliB AJIH 60Jlblll~IX BpeMeH, HO OH OrpaHMWHHO 

IIOJle3eIf ,ZJZlH 6OJlblllHHCTBa IfHTepeCHbIX CJlyqaeB. HatifieHo II 06CJW~aeTCH BJlI4FIHlfe pa3Jl- 

MYHblX HaYaJIbHbIX J’CJlOBMfi Ha BO3h~J’~eHWl CliOpOCTIf If TeMllepaTJ’pbI. Peaj’JlbTaTbI, 

Ilpe~CTalWleHHbIe B AaHHOt CvaTbe, AOIIOJIHCIIOT IfMelO~IIeCH AaHHbIe AJlFl IIOJIy6eCKOHeWfO~ 

HiII,7liOCTII C TeMIl ifEe rpalIIlYIfbIhlIf )‘CJI0BIIJfMII j’ BepXHeti IlOBepXHOCTIl. 


